A noncommutative generalization of Auslander's last theorem

نویسندگان

  • Edgar E. Enochs
  • Overtoun M. G. Jenda
  • J. A. López-Ramos
چکیده

In 1966 [1], Auslander introduced a class of finitely generated modules having a certain complete resolution by projective modules. Then using these modules, he defined the G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems appropriate then to call the modules of G-dimension 0 the Gorenstein projective modules. In [4], Gorenstein projective modules (whether finitely generated or not) were defined. In the same paper, the dual notion of a Gorenstein projective module was defined and so a relative theory of Gorenstein modules was initiated (cf. [2, 5] and references therein). In [12], Grothendieck introduced the notion of a dualizing complex. A dualizing module for R is one whose deleted injective resolution is a dualizing complex. Then a local Noetherian ring R is Gorenstein if and only if R is itself a dualizing module for R. In this case, Auslander announced the result that over such a ring, every finitely generated module has a finitely generated Gorenstein projective cover (or equivalently, a minimal maximal Cohen-Macaulay approximation). In [9], this result was generalized to the situation where R is a local Cohen-Macaulay ring having a dualizing module. More recently, in [13], Jørgensen has shown the existence of Gorenstein projective precovers for every module over a commutative Noetherian ring with a dualizing complex. Using Christensen [3], we here introduce the notion of a dualizing bimodule associated with a pair of Noetherian rings (but not necessarily commutative ones). In [6], it was shown that in this situation, every module in the Auslander class defined by the pair of rings admits a Gorenstein projective precover. Now we give examples where the dualizing bimodule has a double structure over the same noncommutative Noetherian ring and that in this case, if the ring also admits a Matlis dualizing module, (cf. [8] or [10]), we particularize the result to the existence of a stronger approximation, that is, every finitely generated module in the Auslander class has a finitely generated Gorenstein projective cover. Given a class of R-modules , an -precover of a left R-module M is a morphism

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Noncommutative Weight-dependent Generalization of the Binomial Theorem

A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expan...

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

Free Holomorphic Functions on the Unit Ball Of

In this paper we continue the study of free holomorphic functions on the noncommutative ball [B(H)]1 := n (X1, . . . , Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+ XnX ∗ n‖ 1/2 < 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H, and n = 1, 2, . . . or n = ∞. Several classical results from complex analysis have free analogues in our noncommutative setting. We prove a maxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005